Mouse Anti-Human HPGD Monoclonal Antibody [2D20]

CABT-ZC1169 Mouse(HPGD)
Lot. No. (See product label)

PRODUCT INFORMATION

Product Overview
Mouse Monoclonal Antibody to Human HPGD molecule

Antigen Description
HPGD encodes a member of the short-chain nonmetalloenzyme alcohol dehydrogenase protein family. The encoded enzyme is responsible for the metabolism of prostaglandins, which function in a variety of physiologic and cellular processes such as inflammation. Mutations in this gene result in primary autosomal recessive hypertrophic osteoarthropathy and cranioosteoarthropathy. Multiple transcript variants encoding different isoforms have been found for this gene.

Target
HPGD

Immunogen
Full length human recombinant protein of human HPGD produced in HEK293T cell.

Host
Mouse

Isotype
IgG1

Species
Human

Clone
2D20

Applications
ELISA, LMNX

PACKAGING

Concentration
0.5~1.0 mg/ml (Lot Dependent)

Buffer
Stored in PBS (pH 7.4) with 0.05% sodium azide, 10mg/ml BSA, 50% glycerol.

Storage
Shipped at 4 °C. Upon delivery store at -20 °C. Dilute in PBS (pH7.3) before use. Stable for 12 months from date of receipt. Avoid repeated freeze-thaws.

ANTIGEN GENE INFORMATION

Gene Name
HPGD hydroxyprostaglandin dehydrogenase 15-(NAD) [Homo sapiens]

Official Symbol
HPGD

Synonyms
hydroxyprostaglandin dehydrogenase 15-(NAD); 15-hydroxyprostaglandin dehydrogenase [NAD+]; PGDH1; PGDH; SDR36C1; NAD+-dependent 15-hydroxyprostaglandin dehydrogenase; Prostaglandin dehydrogenase 1; short chain dehydrogenase/reductase family 36C, member 1;

GeneID
3248

mRNA Refseq
NM_000860

Protein Refseq
NP_000851

MIM
601688

UniProt ID
P15428

Chromosome Location
4q34-q35
Pathway

Arachidonic acid metabolism; Metabolism; Metabolism of lipids and lipoproteins; Prostaglandin Synthesis and Regulation; Synthesis of Lipoxins (LX); Synthesis of Prostaglandins (PG) and Thromboxanes (TX); Transcriptional misregulation in cancer

Function

15-hydroxyprostaglandin dehydrogenase (NAD+) activity; NAD binding; NAD+ binding; binding; catalytic activity; oxidoreductase activity; prostaglandin E receptor activity; protein homodimerization activity

REFERENCES

3.
